

Infections caused by Extended spectrum beta-lactamases producing *Enterobacteriaceae*: risk factors and clinical outcomes in a Senegalese hospital.

Awa NDIR – Ministry of Health (Dakar-SENEGAL)

Joint IPNET-K/ICAN Conference, 6-8th November 2013, MOMBASA

β-lactamases

β-lactamases

- Bacterial enzymes
- Inactivateβ-lactam antibiotics
- Enterobacteriaceae+++

β-lactamases

β-lactamases ESBLs

<u>Spectrum</u>

- Peniclline
- 1st generation cephalosporin
- 2nd generation cephalosporin

Extended spectrum

- Peniclline
- 1st generation cephalosporin
- 2nd generation cephalosporin
- 3rd generation cephalosporin
- Monobatam

BURDEN OF ESBL

• ESBLs confer resistance to bacteria to all β -lactamases

• **Carbapenem**: drug of choice for the treatment of severe infections due to ESBL-producing *Enterobacteriaceae (ESBL-PE)*

Emergence of resistance reported

• Co-resistance to other antibiotics: **fluoroquinolones**

BURDEN OF ESBL

- Infections caused by ESBLs-PE are an increasing concern in clinical practice
- Limited therapeutic options available
- are associated with an increase
 - \rightarrow ... in length of stay
 - \rightarrow ... in hospital costs
 - \rightarrow ... in mortality

The epidemiology of ESBL-PE varies across countries

TEST SURVEILLANCE (2004-2006) Coque et al. Eurosurveillance 2008

ESBL IN AFRICA

Few published data

- Ghana: blood culture isolates in Children (community)Klebsiella spp: 77.8% of ESBLproducers Huenger F et al 20th ECCMID Abstratct 0395
- Cameroun (prevalence=55.3% of pts colonized with ESBL) Lonchel CM et al 2011

ESBL IN AFRICA

- Despites cases reported, true incidence is likely to be underestimated
 - As in many LMI countries crowded hospitals, poor or inadequate hand hygiene adherence, uncontrolled use of broad-spectrum ATB,lack of IPC program may worsen dramatically the epidemiologic situation

- A previous travel in India and Africa : risk factors for ESBL colonization (Sweden study,2013)
- → high prevalence of ESBL in LMI?

ESBL IN AFRICA

 Surveillance of MDR pathogens is crucial to be aware of the magnitude of the situation

ESBL IN SENEGAL

- No data on MDR pathogens
- Surveillance of MDR based on laboratory hospital
- Pilot surveillance in 2 tertiary care hospitals
- 6 months in 2012 and in 2013
- 88.6% of MDR bacteria isolated were ESBLs

ESBL IN SENEGAL

Graph1: Proportion of ESBL among Enterobacteriaceae strains isolated

SOME COMPARISON...

<u>Graph2</u>: Proportion of ESBL among Enterobacteriaceae strains isolated

IN SUMMARY...

SENEGAL

- ESBL Klebsiella +++
- Incidence rate =

2.59/1000 hospital days

SURVEILLANCE

- Differences on MDR epidemiology
- High burden of ESBL colonization/ infection in SENEGAL

France

- ESBL E.coli +++
- Incidence rate =
 0.25/1000 hospital days

OBJECTIVES

To identify risk factors for hospital- acquisition of ESBL infections

• To evaluate clinical outcomes related to ESBL infections

METHODS

Design study: case-control study

- Patients were identified from the laboraty-based surveillance of MDRO (2012)
- All patients with an Enterobacteriaceae isolated from clinical samples were included in the study
- \rightarrow Cases= patients infected by ESBL+
- \rightarrow Controls= patients infected by non ESBL-

Statistical analysis

- Descriptive analysis
- Univariate and multivariate analysis to identify risk factors
- Univariate analysis to evaluate the clinical outcomes related to infections

RESULTS

Population study:

- 78 patients
- with an hospital acquired infection caused by an Enterobacteriacea

Table1: Site of infections

Site of infection	Ν	%
Urine	55	70.5
Blood	16	20.5
Wound	4	5.1
Others	3	3.9
TOTAL	78	100

UTIs

<u>Table2</u> Independant risk factors for ESBL-PE infection acquisition (multivariate analysis)

Variable	Adjusted OR	95% CI	Р
Urinary catheter	3.4	1.17-10.60	0.028
Mechanical ventilation	3.3	1.10-10.92	0.041
At least 2 comorbidites	4.0	1.35-12.41	0.015

Table 3: Clinical impact of ESBL-PE infections (univariate analysis)

Variable	ESBL+	ESBL-	Р
Length of stay (min-max)	32.45 days	21.56 days	0.009
Mortality	22(47.8%)	9(28.4%)	0.102

• ESBL-PE infected patients stayed 11 extra days in hospital

RESULTS

Table 4: Clinical impact of ESBL-PE infections (univariate analysis)

Variable	ESBL	Non- ESBL	Р
Empiric antibiotherapy			
Penicillin 3rd generation cephalosporins Fluroquinolone	16(34.8%) 29(63%) 17(36.9%)	4(12.5%) 11(34.4%) 4(12.5%)	0.035 0.021 0.020

- Resistance to 3rd GC (100%) and fluoroquinolone (90%)
- Inadequate of empiric antibiotherapy in treating ESBL infections

SURVEILLANCE OF MDRO

Surveillance of MDRO is crucial

 \rightarrow Helps HCW to be aware of the epidemiology of bacterial infections

 \rightarrow Helps guiding empirical antibiotherapy

- Highlights the need to adapt therapeutic strategies to the current local epidemiology
- Points out the importance of the role of the laboratory in IPC: quick identification of germ associated to infections and their current susceptibility
 - \rightarrow adapt empiric therapies

Our study helps to identify:

 Patients at risk of ESBL-PE infection who need ESBL targeted antibiotherapy

 \rightarrow Carbapenems: for severe ESBL-PE infections

- Interventions we should implement to reduce acquisition and dissemination of pathogens
- 1) Monitoring of invasive devices (protocols)
- 2) Antimicrobial stewardship: rigorous restriction of cephalosporins +FQ (only use in susceptible pathogen)
- 3) Promotion of hand hygiene

A- HANDRUBBING

ALCOHOL BASED HANDRUB (ABHR)

HANDRUBBING- IN PRACTICE IN FANN HOSPITAL

- Local production of ABHR
- African Partnership for Patient Safety Program (WHO)
- Helps to increase hand hygiene compliance among HCW (experience of Kenya)

B- HANDWASHING

- As in many LMI, sinks are not always available in the patient environment
- No running water sometimes...
- Innovative device
 CANACLA

HANDWASHING- IN PRACTICE IN FANN HOSPITAL

THE CANACLA

- CANACLA: « canary with valve »
- Canary=water jug

THE CANACLA

THANK YOU

