Piloting Non-Burn Technologies for Treatment of Healthcare Waste

Presenter:

Gladys Ngeno Technical Advisor, PATH Kenya HCWM Project

Outline

- Background Information
- Introduction of Non-Burn Technologies
- Autoclaving Medical Waste
- Testing and Validation of Autoclaves
- Shredding Medical Waste
- Non-Burn technologies in Kenya
- Other Integrated Technologies
- Acknowledgements

Background – Kenya HCWM Project

- A 5-year, PEPFAR-funded project through CDC
- Project period: October 2010 to September 2015
- Implementation is lead by PATH in collaboration with the Kenyan Ministry of Health.
- ETLog Health (Germany) provides technical assistance.

*PA

Background- Waste Treatment in Kenya

- Waste treatment method in Africa is mostly done by burning- open burning and incineration
- Kenya with over 4000 health facilities, 30 % of hospitals have a form of waste treatment in place – Incinerators – Diesel-fired and DeMonfort-type
- Tier 1-3 facilities do not usually have technology in place for waste treatment- rely on open burning
- Incineration has pollution effects such as dioxins, furans, nox, CO, and SO₂. Effects even great burning at low temperatures.

Case Study – Kenyatta National Hospital and MTRH Incinerators

Variable	MTRH	КИН	NEMA Recommendation	Remark
Combustion Efficiency (CE)	60.8%	48.1%	99%	Below
Stack Temperatures	8110	746°	850º - 1100º	Below
Oxygen	5%	9.9%		
Carbon Dioxide	11.2%	8.2 %		
Carbon Monoxide	212.7mg/m ³	26.7 mg/m ³		
Sulphur dioxide	159.4 mg/m^3	45.7 mg/m³		
NO	604.8 mg/m ³	104.1mg/ m ³		
Nitrogen dioxide	0.4mg/m ³	0.4mg/m ³		
NO _X	115.6mg/m ³	104.5 mg/m^3		
NO _X as NO ₂	190.6 mg/m ³	159.4 mg/m ³		
Fuel Type	Low Sulpur diesel	Ultra — low Sulphur diesel		

Case Study of the Two Teaching and Referral Hospitals in Kenya has Journal of Community Health: Volume 37, Issue 6 (2012), Page 1168-1171

%PATH

Transition to Clean Air Technologies in US

- In 1994, the US Environmental Protection Agency announced that medical waste incinerators were responsible for 40% of the US' air pollution from dioxins.
- Introduction of clean air technology cut emissions by over 99%.

POLLUTANT	1990 Emissions (tpy)	2005 Emissions (tpy)	% Reduction
CDD/CDF, TEQ basis*	4,400	15	over 99%
Cadmium	9.6	0.4	96%
Hydrochloric Acid	57,400	3,200	94%
Lead	170	5.5	97%
Mercury	57	2.3	96%
Nitrogen Oxides	64,900	49,500	24%
Particulates	18,600	780	96%
Sulfur Dioxide	38,300	4,600	88%

*dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using 1989 NATO toxicity factors; all other pollutant emissions are in units of tons per year.

Waste Disposal Methods in US and Europe

*PATH

Non-Burn Technologies: Autoclaves and Shredders

- Use of autoclaves and shredders for treatment of medical waste allows for infectious waste to be disposed of as general, non-infectious waste.
 - Autoclave -sterilizes waste
 - Shredding- reduces the size of the waste to unusable, unrecognizable pieces up to 85%.
 - In Africa: facilities in South Africa and Tanzania (Bagamoyo Hospital) have adopted cleaner technologies.

Autoclaves

- Sterilizes waste by subjecting

 it to high pressure saturated
 steam at 121 °C for around
 15-20 minutes depending on
 the size of the load and the
 contents.
- 2 types of Autoclaves
 - Gravity: Downward displacement (or gravitytype)
 - Vacuum: Has a vacuum pump sucks air or air/steam mixtures from the chamber.

Kenyan Waste Mgt Regulations 2006 (121 °C) for 60 Mins – Gravity

Autoclave Validation and Testing

- Validation- Running a series of tests to ensure the autoclave is operating optimally – including the necessary temperature and steam distribution levels to properly disinfect.
- Tests:
 - Chemical testing
 - PCD- steam challenge
 - Biological testing
 - Bowie Dick Tests vacuum autoclaves.

Validation Tests

Steam Challenge Tests

Chemical Strip tests

Validation Tests

Bowie- Dick test

Water Conductivity Tests

Biological Indicator Tests

Shredding Medical Waste

- Shreds the autoclaved waste to unusable, unrecognizable pieces.
- Reduced the volume of waste for final disposal significantly.
- Shredder design feature low torque to allow maximum shredding

*PATH

Final Disposal

- Shredded waste packed in containers for disposal in the municipal dumpsite where available.
- Looking to future, explore waste to energy options and recycling of plastics and waste to energy through land-filling

Non-Burn Technology Pilot in Kenya

PATH and CDC piloting the system in Kenya in 6 sites.

 Karatina DH, Bungoma DH, Coast PGH, Malindi DH, KEMRI /CDC Kisian Site and National Public Health laboratories.

Objectives

- Demonstrate the implementation of non- burn treatment technologies in Kenya.
- Determine feasibility of scale up for expanded use of these technologies in Kenya.
- Disseminate results of the pilot to the national (policy dvpt) and international community.

Challenges

- Capacity of the Autoclaves
- Power rating of the shredder (240 V 3 Phase/ 415V)

Status

- Autoclaves and shredders installed in all the facilities
- Pilot launch and evaluation scheduled for early 2014

Factors to consider when starting up Non- Burn Systems

- Stakeholder Involvement- MOH, County Gvt, environmental Agencies NEMA, Municipal, others.
- Environmental Impact Assessment.
- Housing to incorporate flow of waste Clean/dirty side IPC principles.
- Capacity of autoclaves/ hospital bed capacity and waste generation rate.
 - Vacuum autoclaves preferred with Hepa Filter
- Autoclave testing and validation requirements
- Availability of distilled water /water deionizers.
- Power rating of equipment in reference to the implementing country

Other Integrated Technologies

- Pre-treatment of laboratory waste with small autoclaves before releasing for final treatment and disposal
- Maceration disposal of placentas

☆PATH

Acknowledgements

- CDC
- MOH including management and staff of the participating health facilities
- ETLog Health Germany

This presentation on the Kenya HCWM project was supported by Cooperative Agreement Number 5U2GPS002984-4 from the Centers for Disease Control and Prevention (CDC). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.

Co-Authors: Adriane Berman; Fred Okuku.

For more information, contact: Fred Okuku Project Director, PATH Email: <u>fokuku@path.org</u>

Or visit

http://www.path.org/projects/health_care_waste_Kenya_resources.php

♣PATH

