BRITISH SOCIETY FOR ANTIMICROBIAL CHEMOTHERAPY

@BSACandJAC | @TheUrgentNeed

www.bsac.org.uk

Dr Nick Brown Cambridge University Hospitals NHS Foundation Trust Cambridge, UK

November 2019

Diagnostic stewardship

Introduction – the clipboard audit

- Audits of antibiotic prescribing often assess compliance with a specific treatment guideline (e.g. UTI or community acquired pneumonia)
- An assumption is made that the original diagnosis was correct
- If you have got the diagnosis wrong, how can you prescribe the right treatment?

Limitations of current antibiotic prescribing

- Remains empirical (i.e. 'best guess')
- Diagnostic uncertainty compounded by antibiotic resistance
- Potential consequences:
 - Wrong organism targeted
 - Wrong antimicrobial agent selected
 - Unnecessary exposure to side effects
 - Expenditure without benefit

AMR Review by J O'Neill

https://amr-review.org

What rapid diagnostics could test

Most use of antibiotics in humans is to treat an infection that they haven't got

Overuse of diagnostic tests

Adapted from: Morgan DJ et al. BMJ 2015; 351: h4534

PubMed citations with the term 'Diagnostic Stewardship' in the title field

Approach to diagnostic testing

Diagnostic stewardship view

Messacar K et al. J Clin Microbiol 55:715-723.

Approach to diagnostic testing

Right test	Is the test appropriate for the clinical setting?
Right patient	Will the clinical care of the patient be affected by the test result?
Right time	Will the result be available in time to affect patient care optimally?

WHO Guide to Diagnostic Stewardship

Guide to support robust microbiological diagnosis, including antimicrobial susceptibility testing (AST) in countries participating in surveillance

WHO Essential Diagnostics List

Objectives

- In vitro diagnostics (IVDs) that are recommended for use in a tiered national health care system
- Not intended to be prescriptive
- Countries make own decisions based on national or regional burden of disease, unmet needs and priorities
- Informs UN agencies and NGOs that support selection, procurement, supply, donations or provision of IVDs.
- Informs medical technology private sector on IVD priorities and the IVDs needed to address global health issues.

WHO Essential Diagnostics List 2018

Primary health care

General IVDs	Urine dipstick and urine microscopy Microscopy of disease appropriate specimens (e.g. venous whole blood, urine, stool, etc.)
Disease-specific IVDs	Hepatitis B HIV Malaria Tuberculosis Syphilis

Health care facilities with clinical laboratories

General IVDs	Urine dipstick and urine microscopy Culture of disease appropriate specimens (e.g. venous whole blood, urine, stool, etc.) Blood culture Antimicrobial susceptibility testing
Disease-specific IVDs	Hepatitis B HIV Malaria Tuberculosis Syphilis

Approach to diagnostic testing

The traditional laboratory science view

Pre-analytical	Analytical	Post-analytical
Test selection Ordering Collection Transport	Processing Testing Test performance	Interpretation Reporting Intervention

Approach to diagnostic testing

The traditional laboratory science view

Pre-analytical	Analytical	Post-analytical
Test selection Ordering Collection Transport	Processing Testing Test performance	Interpretation Reporting Intervention

Diagnosing UTI

NICE Urinary tract infection (lower) – women (Oct 2019)

- If the woman is under 65y of age and does not have risk factors for complicated UTI, a urine dipstick can be used as an aid to diagnosis

 dipstick is unreliable in women aged older than 65y and those who are catheterised
- A sample should be sent for urine culture in all women with suspected lower UTI who:
 - Are pregnant
 - Are older than 65y
 - Have symptoms that are persistent or do not resolve with antibiotic treatment
 - Have recurrent UTI (2 episodes in 6 months or 3 in 12 months)

To Dip Or Not To Dip?

- Project lead by Elizabeth Beech (Pharmacist)
- Project undertaken in 2015-16 to improve UTI management in Care Homes
- An audit in 2013 had shown that 115 of 347 residents had received 208 antibiotic prescriptions for UTI
- More than half were diagnosed on basis of urine dipstick testing
- Large number of prescriptions were for ciprofloxacin and cephalosporins

What did they do about it?

- Introduce an education bundle in care homes emphasising the limitations of using urine dipstick alone in assessing residents (23 care homes providing care for ~800 residents)
- Use NICE / SIGN 88 guideline to develop better, structured documentation for UTI diagnosis
- Monitor for unintended consequences
 e.g. episodes of urosepsis requiring hospitalisation

Guidance for Care Home staff for older patients (>65) with a suspected UTI Patient: DOB: Complete and fax to GP surgery. File original in patient notes. ٠ DO NOT PERFORM URINE DIPSTICK - No longer recommended in pts >65 yrs ٠ Nursing Home:..... CLEAR URINE - UTI highly unlikely ٠ Consider MSU where possible if ≥ 2 or more signs of infection - UTI likely Date:..... Carer:..... ٠ Signs of any other infection source? Circle any new symptoms which apply: Cough Shortness of breath Sputum production Nausea/vomiting Diarrhoea Abdominal pain Red/warm/swollen area of skin Patients who can communicate symptoms: All Patients: Tick if present NEW ONSET What does this mean? Tick if Catheter? Sign/Symptom Y/N Temperature above 38.3 or below 36 or shaking Sign/Symptom present chills (rigors)in last 24 hours If YES: Dysuria Pain on urinating Heart Rate >90 Urgency Need to pass urine urgently/new incontinence Reason for catheter: Respiratory rate >20 Need to urinate more often than usual Frequency Blood glucose >7.7 Diabetic? Pain in lower tummy/above pubic area Suprapubic Temp / Perm Y/N tenderness WCC: Bloods taken? Haematuria Blood in urine Date changed: CRP: Passing bigger volumes of urine than usual Polyuria New onset or worsening confusion or agitation Loin pain Lower back pain Management Decision: Review in 24 hours Mid Stream Urine specimen . Antibiotic prescription for UTI: Nitrofurantoin (eGFR>45ml/min) Trimethoprim Other NHS Bath and North East Somerset CCG 21/11/2014

ANTIMICROBIAL CHEMOTHERAPY

Results

- 56% reduction in the proportion of residents who had an antibiotic for a UTI
- **67% reduction** in the number of antibiotic prescriptions
- 82% reduction in the number of residents prescribed antibiotic prophylaxis
- Reduction in unplanned admissions for UTI, urosepsis and acute kidney injury
- Reduced calls to GP practices for inappropriately diagnosed UTI

CHEMOTHERAPY

100 per 100,000

50

Educational bundle delivered to all nursing homes

Counts and 12-month rolling rates of E. coli bacteraemia by CCG and month - NHS Bath And North East Somerset CCG

23

Intervention to reduce treatment of urinary catheterassociated asymptomatic bacteriuria

Two outcomes studied:

 Decision to send a sample (unnecessary screening) and the decision to treat a positive result (overtreatment)

Main findings:

- Reduced sampling
- Decrease in treatment of asymptomatic bacteriuria
 1.6 to 0.6/1,000 bed days
- No change in treatment of CAUTI

Trautner BW et al. JAMA Intern Med. 2015;175:1120-27

Selective urine culture and antibiotic utilisation

Reflex protocol in 500 ICU patients Culture only if >10 wbc/hpf

Results:

- Fewer cultures
- Lower bacteriuria rates
- No change in overall antibiotic days of therapy (DOT)
- Fewer antibiotic starts for index urine culture

Pre: 55/134 (41%) vs. Post: 28/123 (23%) (p=0.002)

Sarg M et al. Infect Control Hosp Epidemiol. 2016; 37: 448-454

Approach to diagnostic testing

The traditional laboratory science view

Pre-analytical	Analytical	Post-analytical
Test selection	Processing	Interpretation
Ordering	Testing	Reporting
Collection	Test performance	Intervention
Transport		

Working patterns: a standard 5 day lab service versus 7 day lab service

Turnaround Times for samples taken on different days of the week

Data from routine laboratory quality indicators, Cambridge

The Bacteriology Laboratory

Cambridge laboratory c. 1987

Fleming's laboratory c. 1929

Levels of automation in bacteriology

Croxatto A et al. Clin Microbiol Infect 2016; 22: 217-235

The new Bacteriology Laboratory

Cambridge laboratory 2013

Allows us to store images

Record susceptibility test images and zone sizes

MALDI-TOF Mass Spectrometry

MALDI Biotyper - Workflow

TaqMan[®] Array Cards

384 wells (1µL reaction volume)

Respiratory Card: Version 9 – ECMO

3		V	
1. RSV A	25. Flu B #1	49. HSV#1	73. S. pyogenes# 2
2. RSV B	26. Flu B #2	50. HSV#2	74. N. meningitidis
3. HPIV 1	27. Staph PVL	51. HSV#3	75. Mec A
4. HPIV 2	28. Flu A #2	52. HSV type 1	76. S. aureus (Nuc)
5. HPIV 3 🔹 🔨	29. Flu A #3	53. HSV type 2	77. TB#2
6. HPIV 4 🔨 👘	30. S. pneumoniae#1	54. EBV#1 🔹 👘	78. TB#3
7. Enterovirus	31. S. pyogenes#1	55. EBV#2	79. P.jiroveci #2
8. Rhinovirus	32. S. aureus (Nuc)	56. VZV#1	80. P.jiroveci #3
9. B. pertussis ptx S1	33. Aspergillus 28S	57. VZV#2 🔨 👘	81. MS2 IC
10. HCoV OC43/HKU1	34. Flu A H12009	58. CMV#1 🔹 👘	82. EVD68
11. 18S RNA	35. Flu A H3	59. CMV#2	83. Acanthamoeba #1
12. HCoV NL63	 Legionella species#1 	60. BK#1 🔨 👘	84. Acanthamoeba #2
13. HCoV 229E	37. H. influenzae #1	61. BK#2	85. Fusarium #1
14. hMPV 🔨 🔨	38. Enterovirus Br	62. BK/JC	86. Fusarium #2
15. MS2 IC	39. M. pneumoniae #2	63. Aspergillus 28S	87. A. fumigatus new
16. Adenovirus #1	40. B. pertussis IS481	64. Measles#1H	88. B19
17. Bocavirus	41. Parechovirus	65. Measles#2 N	89. MERS #1
18. Adenovirus #2	42. P.jiroveci #1	66. Legionella spp # 5a 🔨 🗨	90. MERS #2
19. L. pneumophilia 🛛 🔨	43. RSV #3	67. Tamiflu S	91. MERS #3
20. M. pneumoniae	44. HCoV OC43	68. Tamiflu R	92. Leptospirosis #1
21. C. pneumoniae	45. Rnase P IC	69. IS481#2	93. Legionella spp # 6a
22. Coxiella burnetii 🛛 👥	46. HPIV 1 #2	70. L. pneumophilia #2 👥	94. Legionella species #2
23. C. psittaci	47. HPIV 3 #3	71. S. pneumoniae #2 🗨 🏹	95. Legionella species #3
24. M. tuberculosis	48. Rhinovirus #2	72. H. influenzae #2	96. Legionella spp # 4a

TaqMan[®] Array Cards: Process

Approach to diagnostic testing

The traditional laboratory science view

Pre-analytical	Analytical	Post-analytical
Test selection Ordering Collection Transport	Processing Testing Test performance	Interpretation Reporting Intervention

Selective antibiotic reporting

* p<0.01

Clinical case histories presented to GPs

** p<0.001

Coupat C et al. Eur J Clin Microbiol Infect Dis 2013; 32: 627-36

Selective antibiotic reporting

Change in reported antibiotic susceptibilities and impact on GP prescribing

McNulty CAM et al. J Antimicrob Chemother 2011; 66: 1396-1404

O'Neill update July 2019

10 areas, 29 recommendations

Progress in:

- R&D and investment in AMR
- Early development of new compounds

Lack of progress in:

- Big Pharma engagement and investment
- Diagnostics